A new pma1 mutation identified in a chronologically long-lived fission yeast mutant
نویسندگان
چکیده
We isolated a chronologically long-lived mutant of Schizosaccharomyces pombe and found a new mutation in pma1 (+) that encoded for an essential P-type proton ATPase. An Asp-138 to Asn mutation resulted in reduced Pma1 activity, concomitant with an increase in the chronological lifespan of this fission yeast. This study corroborates our previous report indicating Pma1 activity is crucial for the determination of life span of fission yeast, and offers information for better understanding of the enzyme, Pma1.
منابع مشابه
Pma1, a P-type proton ATPase, is a determinant of chronological life span in fission yeast.
Chronological life span is defined by how long a cell can survive in a non-dividing state. In yeast, it is measured by viability after entry into stationary phase. To date, some factors affecting chronological life span have been identified; however, the molecular details of how these factors regulate chronological life span have not yet been elucidated clearly. Because life span is a complicat...
متن کاملSystematic screen for mutants resistant to TORC1 inhibition in fission yeast reveals genes involved in cellular ageing and growth
Target of rapamycin complex 1 (TORC1), which controls growth in response to nutrients, promotes ageing in multiple organisms. The fission yeast Schizosaccharomyces pombe emerges as a valuable genetic model system to study TORC1 function and cellular ageing. Here we exploited the combinatorial action of rapamycin and caffeine, which inhibit fission yeast growth in a TORC1-dependent manner. We sc...
متن کاملIdentification of a Lifespan Extending Mutation in the Schizosaccharomyces pombe Cyclin Gene clg1+ by Direct Selection of Long-Lived Mutants
Model organisms such as budding yeast, worms and flies have proven instrumental in the discovery of genetic determinants of aging, and the fission yeast Schizosaccharomyces pombe is a promising new system for these studies. We devised an approach to directly select for long-lived S. pombe mutants from a random DNA insertion library. Each insertion mutation bears a unique sequence tag called a b...
متن کاملCharacterization of Two Second-Site Mutations Preventing Wild Type Protein Aggregation Caused by a Dominant Negative PMA1 Mutant
The correct biogenesis and localization of Pma1 at the plasma membrane is essential for yeast growth. A subset of PMA1 mutations behave as dominant negative because they produce aberrantly folded proteins that form protein aggregates, which in turn provoke the aggregation of the wild type protein. One approach to understand this dominant negative effect is to identify second-site mutations able...
متن کاملEps1, a novel PDI-related protein involved in ER quality control in yeast.
PMA1 is an essential gene encoding the yeast plasma membrane [H(+)]ATPase. A pma1-D378N mutant has a dominant-negative effect on cell growth because both newly synthesized mutant and wild-type Pma1 molecules are retained and degraded in the endoplasmic reticulum (ER). Like other substrates for ER-associated degradation, Pma1-D378N is stabilized in mutants defective in components of the ubiquiti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014